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Problem solving makes a wonderful banner under which to march as long as no one looks 

too closely at what others mean by the term. 

(Kilpatrick, 1981, p. 2) 

Introduction  

Research on problem solving in the mathematics curriculum has spanned many decades, 

yielding pendulum-like swings in recommendations on various issues. Ongoing debates 

concern the effectiveness of teaching general strategies and heuristics, the role of 

mathematical content (as the means versus the learning goal of problem solving), the role of 

context, and the proper emphasis on the social and affective dimensions of problem solving 

(e.g., Lesh & Zawojewski, 2007; Lester, 2013; Lester & Kehle, 2003; Schoenfeld, 1985, 

2008; Silver, 1985). Various scholarly perspectives—including cognitive and behavioral 

science, neuroscience, the discipline of mathematics, educational philosophy, and 

sociocultural stances—have informed these debates, often generating divergent resolutions. 

Perhaps due to this uncertainty, educators’ efforts over the years to improve students’ 

mathematical problem-solving skills have had disappointing results. Qualitative and 

quantitative studies consistently reveal mathematics students’ struggles to solve problems 

more significant than routine exercises (OECD, 2014; Boaler, 2009). 

Another perspective on problem solving considers the demands of modern life and work. We 

acknowledge that preparation for adult work and life is not the only goal of mathematics 

education. We contend, however, that for the vast majority of students (who will not become 

academic mathematicians), enhancing their opportunities and performance in work and life 

should indeed be the main purpose for mathematics education. Worldwide, linking 

mathematics education and workplace preparedness has become a central policy theme 

(Grubb & Lazerson, 2004; Mehta, 2013; Miller, n.d.), while linking with life enhancement is 

less so. Nevertheless, insufficient effort has been made to move beyond this policy rhetoric—

to critically examine the mathematical demands of 21st-century work and life, and to 

consider how these demands should reshape mathematics education. This chapter aims to 

contribute to this effort. We examine how employers, workers, economists, and other 

scholars portray the problem-solving demands of modern work and life, and the contributions 

of schooling. We then consider how certain historical problem-solving debates could be 

resolved if the overriding purpose of mathematics instruction were to prepare students to 

meet the demands of work and life today. 

One difficulty immediately arises when investigating problem solving in mathematics 

education: Numerous interpretations of problems and problem solving have been offered over 
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the years with no universally accepted definitions (English & Sriraman, 2010; Lesh & 

Zawojewski, 2007; Lester, 2013; Schoenfeld, 2013; Toerner, Schoenfeld, & Reiss, 2008; 

Zawojewski, 2010). The domain of problem solving is broad, resulting in the myriad 

approaches to defining it. In 1981, Kilpatrick complained that the “imprecise and 

indiscriminate use” of the terms problem and problem solving “allows numerous sins to be 

committed in their name” (p. 2), and the situation seems hardly improved today. 

Traditionally, problems have been defined as tasks in which the solver does not know how to 

arrive at an answer. Lester (2013) reviews numerous examples of this sort of definition, such 

as Duncker’s: “A problem arises when a living creature has a goal but does not know how 

this goal is to be reached” (1945, p. 1). Newell and Simon (1972) echoed this notion of 

blockage but included a motivational aspect: “A person is confronted with a problem when he 

wants something and does not know immediately what series of actions he can perform to get 

it” (p. 72). Some more recent definitions of mathematical problem solving still refer to the 

uncertainty of solution, such as Mamona-Downs and Downs’s (2013) notion of “engagement 

on any mathematical task that is not judged procedural or the student does not have an initial 

overall idea how to proceed in solving the task” (p. 139). Other scholars recognize the 

breadth of the notion, as can be seen in English and Sriraman’s (2010) simple statement 

regarding their use of the term problem solving: “in a broad sense to cover a range of 

activities that challenge and extend one’s thinking” (p. 263). Also offering a broad, albeit 

more comprehensive, view is Hegedus’s definition: 

We take a very broad view of what is mathematical problem-solving viewing it as an 

enterprise of collaborative investigation where multiple approaches are valid. It is not just 

about solving a specific problem, which has a specific answer or application into the real 

world, but rather it is an investigation that might have multiple approaches and where 

students can make multiple observations. 

(2013, p. 89) 

These newer interpretations of problems and problem solving reflect dissatisfaction with the 

traditional notions and their unhelpfulness for the teaching of problem solving (Lester, 2013). 

Taking the perspective of preparation for adult work and life, another ambiguity emerges: 

Should problems in mathematics education refer to mathematical problems (posed, solved, 

and concluded in the domain of mathematics) or to real-world problems and problems in 

other domains (such as science or business) that can be solved by applying mathematics? In 

our research for this chapter, we tried to stay open with regard to the meaning of problem 

solving in mathematics education, to avoid arbitrarily constraining our interpretations of what 

21st-century demands might require of mathematics education. 

We structure the remainder of our chapter as follows. First, we review briefly some key 

debates in mathematical problem-solving research of past decades. We then review the 

literature about the demands of modern work and life. Here, we examine drivers of change in 

the workplace and everyday life, the nature of quantitative problems that need to be solved in 

these changing contexts, and the competencies required in doing so. Finally, we return to the 

key debates to discuss possible resolutions suggested by the research about problem solving 

in the 21st century. 
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Debates (and Disappointments) of Mathematical Problem-

Solving Research  

Promoting mathematical problem solving has been a long-standing, often contentious 

endeavor. The importance of problem solving in the mathematics curriculum has been 

universally recognized, and scholars have advanced numerous strategies for building 

students’ competencies in solving multiple problem types. The 1980s was to be the “decade 

of problem solving,” with the National Council of Teachers of Mathematics’ (NCTM) An 

Agenda for Action recommending the mathematics curriculum be organized around problem 

solving (1980, p. 2). Recent years have seen a resurgence of interest in problem solving 

among mathematics-education researchers, as evidenced by the many publications devoted to 

numerous issues pertaining to problem-solving theory and practice, both in school and 

beyond. For example, the 2013 special issue of The Mathematics Enthusiast (Vol. 10, nos. 1–

2) aimed to address “the current trends in problem solving research and … the main results 

that influence teachers’ practices and curricula design” (Moreno Armella & Santos-Trigo, 

2013, p. 4). In another journal special issue (ZDM, Vol. 39, nos. 5–6), Toerner, Schoenfeld, 

and Reiss (2008) edited a review of problem-solving developments around the world. And a 

recent special issue of Educational Studies in Mathematics (Vol. 83, no. 2013) and an edited 

book, Problem Posing: From Research to Effective Practice (Singer, Ellerton, & Cai, 2013) 

were devoted entirely to the topic of problem posing. 

Unfortunately, this decades-long focus on mathematical problem solving, while yielding 

important insights into the phenomenon, has not produced clear guidance for educational 

practice. Questions about how to promote problem-solving competency remain; indeed, we 

contend that they have become more perplexing in light of proliferating interpretations of 

problems and problem solving, the recent emphasis in many countries on equitable education 

for a greater range of students, and the changing demands of work and society. In particular, 

certain unresolved debates appear to impede our forward movement. We review some of 

those debates here. 

Teaching Problem Solving versus Teaching Mathematics through Problem Solving 

Should the overarching goal of using problems in the mathematics classroom be to teach 

problem solving per se, or to teach mathematical content, using problem solving as a vehicle? 

Some scholars (e.g., Anderson, 2014) blame disappointing student gains on the traditional 

treatment of classroom problem solving, where it is independent of, and isolated from, the 

development of core mathematical ideas, understandings, and processes. In school, problem 

solving often takes the form of application (“story”) problems at the end of the textbook 

chapter, positioning it as an add-on task, presumably to promote the ability to apply already-

learned content. Such problems rarely serve either the purpose of teaching problem solving or 

building or deepening the knowledge of that content (Anderson, 2014). But the limited 

research attention to how concept development might be accomplished through problem 

solving indicates that problem solving has not been seen as playing a central role in the 

curriculum but rather has been pushed to the periphery (Rigelman, 2013). Also needed are 

studies that explore whether both goals can be accomplished at once, examining the impact of 

problem-driven conceptual development on the development of problem-solving 

competencies (Lester & Charles, 2003; Schoen & Charles, 2003). In sum, while more recent 

scholarship favors problem solving as a means for developing mathematics-content 

understanding as opposed to an end in itself, the debate is far from settled. 
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The Effectiveness of Heuristics and General Skills 

Closely related to the debate about the purpose of problem solving in the classroom is a 

second debate about how to teach students to solve problems. Earlier scholarship rested on 

the notion of problem solving as a general ability (or ability set) that could be developed 

across content areas or even in a decontextualized manner. Perhaps the most contentious facet 

of this debate has been the efficacy of teaching general strategies and heuristics—the tools of 

an “expert” problem solver—instigated largely by Polya’s seminal book, How to Solve it 

(1945). This book has long been regarded as a valuable resource for improving students’ 

abilities to solve unfamiliar problems by offering a list of steps and solution strategies to take 

when “stuck.” Despite some evidence that such tools can contribute to successful problem 

solving, they nevertheless appear not to have delivered the improvements in problem solving 

that educators envisioned many years ago (e.g., Lesh & Zawojewski, 2007; Lester & Kehle, 

2003; Schoenfeld, 2013; Silver, 1985). 

Other general competencies have also been associated with problem solving. Metacognition 

(the reflection of the solver on his or her thinking and solving processes) is presumed to 

influence problem solving, with more sophisticated levels of self-awareness and explicitness 

about strategies being associated with greater success in solving problems (Kapa, 2001; 

Schneider & Artelt, 2010). Over the years, numerous instructional interventions have been 

developed and implemented to enhance metacognition as an indirect means of improving 

problem-solving competence (e.g., Goos, Galbraith, & Renshaw, 2002; Kramarski, Weisse, 

& Kololshi-Minsker, 2010). Social skills such as collaboration and communication have also 

been linked to problem-solving competence and, again, targeted directly with instructional 

interventions (Goos & Galbraith, 1996; McKenna & Agogino, 2004). 

Overall, there appears little evidence to suggest that improving these general skills or 

heuristics leads to greater success in solving problems (mathematical or otherwise) (Lester, 

2013), though other positive outcomes surely result. One explanation for this limited success 

is that these general skills are often presented as a collection of separate entities to be learned 

and applied, without students fully knowing and understanding why, when, and how to do so 

(e.g., English & Sriraman, 2010; Lesh & Zawojewski, 2007; Lester, 2013). Another 

explanation is that problem-solving skills and heuristics, initially conceived to be used 

interactively with students engaged in authentic problem solving, are often incorporated into 

textbooks didactically and thus reduced to procedural algorithms (Stanic & Kilpatrick, 1989). 

The Role of Context and Authenticity 

Mathematics educators frequently debate the role of realistic contexts in teaching. Students’ 

difficulties in applying mathematical concepts and abilities (that they presumably have 

learned in school) outside of school, or in other classes, such as those in the sciences, have 

been amply documented (de Abreu, 2002; Greiffenhagen & Sharrock, 2008; Nunes, 

Schliemann, & Carraher, 1993). A prevailing explanation for these difficulties is the context-

specific nature of learning and problem solving. That is, problem-solving competencies that 

are learned in one situation take on features of that situation; transferring them to a new 

problem in a new context poses challenges (Lobato, 2003; Hohensee, 2014). This view of 

problem solving would also explain why acquiring general (heuristic, metacognitive, and 

social) skills might do little to improve problem-solving competence; indeed, it challenges 

the existence of “problem-solving competence” as a unitary phenomenon. One resolution is 

to situate mathematics learning in real-world problem-solving contexts, although the problem 
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remains that mathematics learned in one context does not easily transfer to other contexts. 

Additional concerns have been raised regarding the equitability of contextualizing 

mathematics instruction. Lubienski (2000) found children from low-income households less 

able to access the mathematics in a contextualized curriculum, while Cooper and Dunne 

(1998) showed low-income students scoring more poorly on contextualized assessment 

questions. Both studies concluded that the context presented a distraction that higher income 

students knew to ignore. Finally, importing real-world problems and contexts into the 

classroom necessarily reduces their authenticity, for pedagogical and logistical reasons. As 

Bakker, Kent, Derry, Noss, and Hoyles (2008) warned, we cannot simply reproduce 

workplace experiences within the classroom in the hope of increasing students’ chances of 

success beyond school. More research is needed to settle questions about whether teaching 

mathematics through real-world problem contexts improves students’ abilities to solve a 

range of problems in adulthood and, if so, how authentic those contexts must be. 

What Mathematical Content to Teach 

A more general debate that overlaps with the issue of problem solving concerns what 

mathematical content is most important to teach. This question, too, can be answered from 

many perspectives, including the perpetuation of the discipline, the preparation of future 

mathematicians, readiness for future mathematics or other classes, and personal intellectual 

development or enjoyment. Again, the perspective we take here is preparation to meet the 

demands of modern work and life, with full recognition that this is only one of many valid 

goals. 

In the next section, we examine how employers, workers, economists, and other scholars 

portray the problem-solving demands of modern work and life and the contributions of 

schooling, as a means of shedding new light on these classic debates. 

The Demands of 21st-Century Work and Life  

Drivers of Change 

The very phrase “21st-century demands” implies a view that life and work today significantly 

differ from life and work even a few decades ago, in ways that alter cognitive requirements 

and obligate new educational priorities. Before examining those new requirements and 

priorities, we first ask what has driven change in life and work and what is the basis for 

claims that their requirements are different. 

Those who believe 21st-century life and work has changed significantly point to several 

sources. Technological advances and ubiquity are perhaps the most commonly cited drivers 

of change (Brynjolfsson & McAfee, 2011; Goldin & Katz, 2008; Handel, in press). In the 

workplace, computers and robots now accomplish routine or manual tasks that once required 

human actors (Autor, Levy, & Murnane, 2003; Partnership for 21st-Century Skills [P21], 

2008). This development, in turn, purportedly requires workers to have higher-level problem-

solving skills (Kaput, Noss, & Hoyles, 2008; Hoyles, Noss, Kent, & Bakker, 2010; P21, 

2008). Multiple explanations have been offered for the mechanism by which technology 

elevates cognitive demands on the workforce as a whole. Automation by computers or robots 

may be replacing low-cognitive-level jobs, leaving only higher-level jobs remaining. 

Alternately, technology may be transforming what were once low-level jobs, because 
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working with technology, or coping with technological change requires higher levels of 

cognition (Schultz, 1975; Welch, 1970 [both cited in Pellegrino & Hilton, 2012]). Or the 

mechanism may be less direct: some research finds that company-level technology 

investments yield productivity gains only when accompanied by organizational changes such 

as new strategies, processes, practices, and structures (P21, 2008). Thus, technology may be 

altering the cognitive demands on workers by changing their organizational roles, engaging 

them, for example, in self-managed teams, information sharing, and/or decentralized decision 

making. 

Which, if any, of these mechanisms accurately ties technological advances to increased 

cognitive demands at work is uncertain. As Brynjolfsson and McAfee write, “Digital 

technologies are one of the most important driving forces in the economy today. They’re 

transforming the world of work and are key drivers of productivity and growth. Yet their 

impact on employment is not well understood, and definitely not fully appreciated” (2011, p. 

9). Handel’s (in press) study of U.S. workers challenges both the job-replacement and job-

transformation explanations. Furthermore, changes in organizational structures and practices 

that elevate cognitive demands on workers, such as flatter hierarchies and greater use of 

teams (Tucker, 2013), may have other causes than technology. Globalization and intensifying 

international competition are offered as other major drivers of elevated cognitive demands in 

the workplace (Hoyles et al., 2010). Most employers surveyed by the Partnership for 21st-

Century Skills felt global competitiveness had shifted the importance of certain skills and 

competencies in their companies. Other change drivers—some of which are interdependent 

with technology, globalization, and each other—include the transformation from a 

manufacturing to a service or information economy (P21, 2008; Reich, 1991[cited in 

Pellegrino & Hilton, 2012]), the rapid pace of change in business (P21, 2008), mass 

customization of products, and elevated standards for communication with customers (Hoyles 

et al. 2010). 

Despite these economic changes, there is some debate about whether the cognitive demands 

of the workplace, overall, are actually rising. Levy and Murnane (2004 [cited in Pellegrino & 

Hilton, 2012]) argue that the modern workplace increasingly requires the ability to solve 

nonroutine problems, as well as complex communication competencies and verbal and 

quantitative literacy. Yet a meta-analysis by Bowles, Gintis, and Osborne (2001), as well as 

other studies reviewed by Pellegrino and Hilton (2012), show small to no correlations 

between scores on basic cognitive tests and earnings since the 1970s, suggesting that the 

labor-market demand for cognitive competencies has been static. Also debated is whether 

changes in workforce needs, if they do exist, constitute a crisis, as many proclaim. In the 

U.S., for example, STEM fields may be enjoying high job growth (Langdon, McKittrick, 

Beede, Khan, & Doms, 2011) but experts (e.g., Atkinson & Mayo, 2010; Salzman, Kuehn, & 

Lowell, 2013) differ in their assessments of employers’ ability to fill those new positions. 

Other experts (Barton, 2000; Pellegrino & Hilton, 2012) also note an elevated premium on 

college degrees but question the reason. Rather than requiring college-level skills and 

knowledge, employers may seek a college degree only as a means of screening for basic 

skills, persistence, or work ethic (Murnane & Levy, 1996; Vedder, Denhart, & Robe, 2013). 

Perhaps the new environmental condition that matters most to education is ideational. Mehta 

(2013) describes how the 1983 report A Nation at Risk linked—to a degree not seen before—

schooling to individual and national economic success, thus engendering a new paradigm. 

This paradigm presumed that schools (not social forces) should be held responsible for 

academic achievement, were substantially underperforming in this role, and could be 
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compelled to improve through monitoring by standardized cognitive tests—presumptions that 

have opened the door for and legitimized a dramatic shift from local to federal control of U.S. 

public schools. The implication of this new paradigm for our discussion is that notions of 

elevated cognitive demands on today’s workers may not reflect actual economic or 

technological developments as much as a new perspective on the purpose of schooling (and 

policies that embody this perspective) that directly ties education to the quality of the 

workforce. 

Overall, despite general agreement that broad economic and technological change has 

occurred in the past few decades, its impact on employment and its cognitive demands are not 

well established. Handel (in press) sums up the situation: “Researchers have only a cloudy 

sense of the levels and kinds of job skill requirements, rates of change, the dimensions along 

which job skills are changing, and the interrelationships between skills, technology, and 

employment involvement” (p. 3). 

Unsurprisingly, given a current policy environment that prioritizes economic gain among the 

purposes of education, less research has targeted the changed demands of 21st-century life 

outside of work. A major source of such scholarship is Decision Research 

(www.decisionresearch.org), a nonprofit organization that investigates human judgment, 

decision making, and risk. Multiple studies from this group document recent movement in the 

areas of health care and personal finance towards greater consumer decision making, at the 

same time that available information about these areas is burgeoning. In health care, 

“Coverage choices are becoming more complicated and varied, health delivery systems more 

complex, and evidence of provider quality and treatment efficacy more transparent. 

Consumers therefore require more knowledge and greater skill to take full advantage of new 

sources of information and to make appropriate choices” (Hibbard, Peters, Dixon, & Tusler, 

2007, p. 380). In one study, 50% of people seeking information about cancer first consulted 

the Internet; only 25% first consulted a doctor (Nelson, Fagerlin, & Peters, 2008). Much of 

this health-care and financial information is represented by statistics (e.g., regarding risks and 

benefits) and graphs (e.g., survival and mortality curves), as well as in complex documents 

and forms (e.g., from insurers). One’s ability to understand this information has obvious 

consequences for one’s health and well-being (Nelson et al., 2008). 

In 1988, Davis observed that virtually all aspects of modern life had become mathematized, 

including driving, warfare, and even aesthetic judgment. He argued that citizens now needed 

not technical mathematical skills as much as an understanding of the ways mathematics 

shaped their lives, so that they could participate knowledgeably in social decisions rather than 

ceding control to a mathematically expert elite. In 2015, Davis’s observation has only 

become truer. (Indeed, this sort of socio-mathematical savvy might allow people to more 

critically analyze policy rhetoric about the economic imperatives for increased schooling or 

cognitive skill!) 

Problems Faced in 21st-Century Life and Work 

Whether or not the demands of 21st-century work and life have changed considerably, and 

regardless of the reason, it is still meaningful to ask about the nature of the problems that 

need to be solved there. Most investigations into the cognitive requirements of the modern 

workplace are general: asking large groups of employers what they desire from workers; or 

trying to correlate levels of schooling with employment, earnings, or national productivity. 

Smaller-grained studies of the kinds of intellectual problems that arise in work (or everyday 

http://www.decisionresearch.org/
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life) are few and, by necessity, highly context specific. Such studies are usually ethnographic 

and thus, while providing a thorough characterization of problems in particular workplaces or 

everyday settings, are difficult to generalize across adult activity. 

Much of the ethnographic research about the kinds of problems modern workers need to 

solve has been conducted by the Techno-Mathematical Literacies in the Workplace Project. 

Between 2003 and 2007, Hoyles, Noss, Kent, Bakker, and colleagues followed midlevel 

workers in IT-intensive settings: five manufacturing companies and two finance companies. 

While the problems these workers solved on a regular basis varied considerably, 

commonalities were observed within and across companies. All of the work centered on 

highly mathematized processes, for example, statistical process control (SPC) in 

manufacturing and the calculation of interest rates in finance. Graphs, charts, spreadsheets, 

and computer simulations displayed the input variables and output data for these processes. 

Everyday problems involved the impact of changes in input variables on output data, 

requiring workers to interpret these technological displays. The research team coined the term 

techno-mathematical literacies (TmL) to capture the ways that mathematical processes were 

understood with and through technological representations. Hoyles et al. (2010) observed that 

in these workplaces, “Calculation and basic arithmetic are of subsidiary importance compared 

to a conceptual grasp of how, for example, process improvement works, how graphs and 

spreadsheets may highlight relationships, and how systematic data may be used with 

powerful, predictive tools to control and improve processes” (p. 168). Unfortunately, many 

workers lacked sufficient TmL to solve their everyday problems effectively. The team 

concluded that the workers’ “major skills gap” could be closed not with more mathematical 

training (e.g., to understand the algebra in which the processes were formally described) but 

with a deeper understanding of the mathematical models underlying the processes. Bakker et 

al. (2008) further investigated the nature of problem solving engaged in by workers using 

SPC, in contrast to the statistical reasoning required in school tasks. They found that both 

forms of problem solving aim for generalization, use data as evidence, employ probabilistic 

language, and compare data against models. But SPC involves generalizing about a process 

(rather than a population, as in school tasks) and its goal is (a decision about) action, to 

reduce output discrepancies. Thus, SPC requires abductive inference (explaining data 

anomalies as results of process events or conditions) rather than inductive (simply predicting 

data patterns). Also, unlike school tasks, which often entail suppressing context, interpreting 

SPC data relies on context (e.g., cost, knowledge of process). 

Gainsburg’s (2006, 2007a, 2007b) findings from her ethnographic study of structural 

engineers echo the findings of the TmL team. The phenomena at the center of the engineers’ 

problem solving were not processes per se but structures and their behavior. However, the 

need to understand underlying models that were represented mathematically (and 

technologically) was just as crucial. Indeed, in Gainsburg’s assessment, “The heart of the 

intellectual work of structural engineers is the application of mathematical representations 

and procedures to solve design problems, which usually requires the selection, adaptation, or 

creation of a model” (2007b, p. 38). In structural engineering, mathematical models are 

unavoidable because the structures do not yet exist. A main source of problems is the 

complexity and uniqueness of each building, which preclude the simple application of 

established procedures. Structural engineers need a deep understanding of structural behavior, 

combined with conceptual fluency with usually basic mathematics, to create models that 

accurately represent the proposed building or elements. As with midlevel manufacturing and 

financial work, the problems that structural engineers must solve are, at root, about 

prediction, and the tools that support that prediction are mathematical models and processes. 
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It is important to note that not only do these ethnographic findings not necessarily generalize 

across workplaces, they do not even represent the work of all employees within these fields. 

For example, a study by Kent and Noss (2002) of a much larger structural-engineering firm 

than the ones studied by Gainsburg painted a different picture: Here, the creation of 

mathematical models was assigned to mathematical specialists and not generally handled by 

engineers (also Dudley, 2010). Similarly, in the manufacturing firms in the TmL project, 

higher-level employees interacted with the processes in ways that required more formal 

mathematical understanding and manipulation, while lower-level workers presumably never 

solved problems involving mathematically described processes. 

Handel (in press) conducted a rare example of a broader investigation about the nature of 

problems encountered across a spectrum of work settings. In his survey of 2,000 workers 

across a range of U.S. workplaces, only 22% of the respondents reported having to solve 

“hard” problems “often” in their jobs; about 33% said they rarely or never had to do so. 

While the frequency of hard problems did not vary greatly by broad occupational type, it was 

somewhat correlated with the level of formal education a job required. The contrast between 

Handel’s findings and those of the TmL team and Gainsburg is striking. One explanation 

might be that the latter focused on unusually challenging jobs. A different explanation might 

be methodological: people are known to be poor describers of their own activity. In 

particular, when reporting on their mathematical problem solving, people default to school-

type characterizations of mathematics (formal and algorithmic), which are rarely evident in 

their work (Hoyles, Noss, & Pozzi, 2001). Ethnographers generally take a broader view of 

mathematics and “see” the same people using mathematics to solve everyday problems. It 

must also be noted that the TmL team detected problems that could have been (better) solved 

with more significant understanding and quantitative reasoning than they actually were. Thus, 

the TmL team described problems in the workplaces they studied that were only 

hypothetically challenging. Had Handel surveyed these same workers, they might also have 

reported that they rarely solved hard problems. 

Outside the workplace, the Decision Research group portrays the kind of problems that 

people encounter in making everyday decisions about personal health care. These portrayals 

appear to be based on the researchers’ experience or literature reviews and not systematic 

research. Reyna, Nelson, Han, and Dieckmann (2009) and Hibbard et al. (2007) describe 

typical problems related to personal health care: having to perform basic arithmetic 

operations on information embedded in a document, interpreting the information on 

medication prescription or nutritional labels, choosing among hospitals based on comparative 

data, and estimating risk magnitudes. While these problems sound less challenging than those 

facing engineers and midlevel manufacturing and finance workers, they may be more 

problematic for most people because they arise infrequently and thus never become routine, 

as do many workplace problems. Indeed, as will be discussed later, most people struggle to 

solve these health care–related problems. 

In sum, we lack a comprehensive view of the kinds of problems people must solve in 21st-

century work and life, but generalizations are probably impossible anyway. Some workers 

solve complex problems that require mathematical interpretation and reasoning, some do not, 

and some who don’t would probably accomplish their jobs better if they did. The advent of 

sophisticated, mathematized processes and computerized representations of their output may 

have elevated the need for people to “make sense of mechanism” (Kaput, Noss, & Hoyles, 

2008), as is the case for structural engineers and midlevel manufacturing and finance 
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workers, but more research is needed to determine the ways and extent to which this is true 

and for what segments of the population. 

Competencies Required by 21st-Century Work and Life 

Researchers have taken many routes to try to determine the competencies required by modern 

work and life. At the most macroscopic end are studies that examine the impact of schooling 

in general on national and individual economic outcomes. These studies are valuable in that 

they measure real outcomes, but they offer only blunt proxies for cognitive competencies and 

problem-solving success. They are relevant to our discussion only if we presume that “going 

to school” yields competencies needed in the workplace and that economic gains indicate 

worker effectiveness in solving workplace problems—presumptions we problematize later. 

Very generally speaking, time spent in school correlates with both individual and national 

economic gains (Barton, 2000; Bowles, Gintis, & Osborne, 2001; Cawley, Heckman, & 

Vytlacil, 2001; Goldin & Katz, 2008; Heckman, Stixrud, & Urzua, 2006; Tienken, 2008). 

Unclear, however, is why schooling produces economic gains—what schooling imparts that 

matters (Pellegrino & Hilton, 2012). An obvious explanation—that schooling impacts the 

economy by increasing cognitive ability—has been tested repeatedly, with conflicting or 

inconclusive results (Bowles et al., 2001; Cawley et al., 2001, Hanushek & Woessman, 2008, 

2011; Murnane, Willett, & Levy, 1995; OECD, 2010). Furthermore, the impact of schooling 

on national economic outcomes may vary by educational level. The effect is unquestionably 

strong in developing countries. Elevating a national average from elementary to middle-

school education, or elevating low cognitive abilities to moderate ones, yields greater 

economic gains than adding years of more advanced schooling or high-level cognitive skills 

(Bowles et al., 2001; Hanushek & Woessmann, 2008; Tienken, 2008). (In fact, Tienken 

argues that causality runs in the opposite direction in highly educated countries: thriving 

economies beget high education levels.) The value of college, however, has recently come 

under scrutiny. College degrees certainly advantage individuals in employment seeking 

(Greenstone & Looney, 2011; Zaback, Carlson, & Crellin, 2012), but experts differ on how 

much countries stand to gain by increasing their college-going populations (e.g., Goldin & 

Katz, 2008; Handel, in press; Lim & Kim, 2013; Vedder, Denhart & Robe, 2013; Wolf, 

2009). 

Technology appears to mediate the relationship between schooling or cognitive ability and 

economic outcomes, although, again, there is little agreement about how. Goldin and Katz 

(2008) contend that rising U.S. income inequality is the combined result of technological 

advances and a drop in college-degree completion—a low-supply, high-demand situation that 

elevates the individual economic return on a college degree. Closer inspection, however, 

reveals a “hollowing out” effect: midlevel white-collar work is disappearing, due, as some 

argue, to automation, rendering the greatest job growth at the “ends,” in areas of low and high 

cognitive demand (manual labor and cutting-edge innovation) (Barton, 2000; Brynjolfsson & 

McAfee, 2011; Krugman, 2011). This bodes poorly for increased college education as an 

overall workforce-development strategy. Globally, technology exerts varied demands on 

different nations’ needs for cognitive ability. To make economic progress, developing 

countries need only imitate other countries’ technologies (an endeavor with lesser cognitive 

requirements) while developed countries must advance through innovation, which requires 

greater cognitive skill (Hanushek & Woessmann, 2008, 2011). 
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Many studies have attempted to trace the economic effects of schooling to specific courses, 

particularly mathematics, again with conflicting findings. Altonji (1995) found each 

additional 10th–12th-grade mathematics course predicted a very small earnings benefit for 

individuals, compared to the benefit of a year of school in general, and no benefit to wage 

growth over the first few years of work. Levine and Zimmerman (1995) documented a 

somewhat larger wage benefit for high-school mathematics courses, but only for female 

college graduates. These weak effects for mathematics courses may be a function of 

averaging a range of high-school courses, possibly diluting stronger earnings returns to more 

advanced courses with the weaker returns to more basic courses. Interestingly, Bishop and 

Mane (2004) found that, among high-school courses, career-and-technical-education courses 

had the biggest earnings impact, an effect that was amplified for students who attended 

college. 

The difficulty of attributing the economic outcomes of schooling to specific courses raises the 

question: What skills, knowledge, or behaviors are learned in school that matter in the 

workplace? Various surveys of employers reveal their desire for workers who possess “soft 

skills” related to collaboration and communication, personal attributes like industriousness 

and perseverance, and general, higher-order, cognitive skills used in problem solving and 

critical thinking. Three-hundred Fortune 500 executives surveyed by MetLife (2010) felt the 

most important areas for college and career readiness were problem-solving skills, critical-

thinking skills, clear and persuasive writing, and the ability to work both independently and 

on teams; they considered higher-level mathematics and science skills far less important. 

Similarly, 100 U.S. business leaders surveyed by the Business Council (2013) rated the most 

important skills/capabilities for workers, in order, as work ethic, teamwork, decision making, 

critical thinking, basic reading and math, and computer literacy. The Partnership for 21st-

Century Skills identified four broad areas of employer-desired skills: core subjects and 21st-

century themes; learning and innovation skills; information, media, and technology skills; 

and life and career skills (P21, 2009). Learning and innovation skills subdivided into three 

categories: creativity and innovation, critical thinking and problem solving, and 

communication and collaboration. Relevant to our chapter is their articulation of critical 

thinking and problem solving: 

• Reason Effectively  

o Use various types of reasoning (inductive, deductive, etc.) as appropriate to 

the situation. 

• Use Systems Thinking  

o Analyze how parts of a whole interact with each other to produce overall 

outcomes in complex systems. 

• Make Judgments and Decisions  

o Effectively analyze and evaluate evidence, arguments, claims and beliefs. 

o Analyze and evaluate major alternative points of view. 

o Synthesize and make connections between information and arguments. 

o Interpret information and draw conclusions based on the best analysis. 

o Reflect critically on learning experiences and processes. 

• Solve Problems  

o Solve different kinds of nonfamiliar problems in both conventional and 

innovative ways. 

o Identify and ask significant questions that clarify various points of view and 

lead to better solutions. 
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Overall, such employer surveys are useful for their “close-to-the-ground” perspective on the 

requirements of the 21st-century workplace, but they do not empirically link these 

competencies to actual outcomes such as productivity, employment, or wages. (A 2013 

Gallup study of recent graduates, ages 18–35, however, links school experience with these 

skills to self-reported success in the workplace.) Such surveys may, however, help explain the 

mechanisms by which schooling contributes to such outcomes. Studies comparing high-

school graduates to earners of high-school equivalency-exam certificates suggest that 

valuable “noncognitive traits” are acquired through attendance in school and rewarded with 

increased earnings, especially for women and for men in low-skill markets (Heckman et al., 

2006). Relatedly, Cawley et al. (2001) found that specific behavioral and social skills 

impacted earnings independently of cognitive skills, although they seemed to operate by 

increasing school attendance and performance. Unfortunately, these and other reports 

(Business Council, 2013; Fischer, 2013; P21, 2006) make clear that many U.S. workers, even 

those with college degrees, lack the interpersonal and problem-solving skills, and the work 

ethic, that employers desire. 

What of the mathematical requirements of modern work and life? In contrast with current 

policy rhetoric, researchers have observed that most work over the past few decades has 

involved only basic mathematics. In the 1995 National Job Task Analysis (Packer, 1997), 

3,000 U.S. workers across levels reported on the skill requirements of their jobs. Only one of 

the 25 competencies that they rated most important (Number 14) was mathematical: “perform 

arithmetic.” Further analysis showed that the content of the most basic high-school algebra 

and geometry courses more than covered the mathematical skill requirements of the vast 

majority of workers. Apparently little has changed since the 1990s. Handel (in press) 

interviewed 2,000 workers across levels and found that, whereas most workers used 

arithmetic on the job and about 66% used fractions, decimals, and percentages, only about 

25% used more advanced mathematics, usually simple algebra. (In an interesting exception, 

15% to 30% of “skilled blue-collar workers” used geometry, trigonometry, inferential 

statistics, and complex algebra—similar to the rates of use among managers and 

professionals—while all other groups rarely did.) The U.S. Bureau of Labor Statistics 

confirms these worker self-reports of low mathematics requirements in its 2001–2012 

projections for job openings (Barton, 2006). So, too, do the findings of a National Center on 

Education and the Economy (NCEE) (2013) study of U.S. community colleges. (Because 

community colleges provide the bulk of U.S. vocational education, their course requirements 

arguably represent a baseline for career readiness.) For the initial credit-bearing courses in the 

eight most popular community-college programs, middle-school-level mathematics—

especially arithmetic, ratio, proportion, expressions, and simple equations—was most 

important. Only one program required Algebra 2. Yet many programs required mathematical 

skills not emphasized in high school: schematics, geometric visualization, complex 

applications of measurement, mathematical modeling, statistics, and probability. As with soft, 

social, and general problem-solving skills, many workers and community college students 

lack even these basic mathematical skills (Murnane & Levy, 1996; NCEE, 2013; Packer, 

1997). We have previously noted the shortcoming of such studies: They are constrained by 

their respondents’ mathematical skills. They cannot reveal whether improved mathematical 

skill, understanding, or application ability among workers would increase the number of 

topics and level of mathematics they used and whether that would, in turn, enhance their 

productivity or work quality. 

More or better mathematics learning might also enhance life outcomes. Studies conducted by 

the Decision Research group showed more numerate people making better health and 



13 

 

financial decisions and enjoying better health and financial outcomes. Echoing workplace 

studies, these authors report that many people lack the requisite numeracy for such decisions, 

even though the mathematics involved is basic, suggesting that improved mathematical skill 

would enhance many lives (Peters, Hibbard, Slovic, & Dieckmann, 2007). Their 

methodology is, in itself, illuminating: Numeracy is treated as a somewhat hybrid construct, 

measured by a test of quantitative reasoning in context. As such, it is theoretically decoupled 

from schooling, education level, and intelligence (Nelson et al., 2008; Peters & Levine, 

2008). That is, the independent variable (numeracy) captures the ability to apply particular 

mathematical concepts, overlapping somewhat with the dependent variable (making real-

world decisions involving quantity). This might shed some light on why years of high-school 

mathematics—a purer measure of mathematical competence—poorly predicts workplace 

performance (i.e., earnings): The mathematics in high-school courses is probably more 

topically advanced than necessary for real-world decisions, but such courses do not enable 

students to apply mathematics in real-world problem solving. As Pellegrino and Hilton 

(2012) note, “Over a century of research on transfer has yielded little evidence that teaching 

can develop general cognitive competencies that are transferable to any new discipline, 

problem, or context, in or out of school” (p. 8). 

How and Where Might 21st-Century Competencies Be Developed? 

Despite their pessimism about teaching for transfer, Pellegrino and Hilton (2012) conclude 

their review of 21st-century competencies with a call for exactly that. Indeed, for them, what 

makes something a 21st-century competence is that a person can apply it in situations 

different from the one in which it was learned. Drawing on a large body of education 

research, they propose that schooling should aim for “deep learning”—an understanding of 

the general principles or structures that underlie concepts and problems—because deep 

learning promotes transfer. 

Pellegrino and Hilton concede uncertainty about what schooling imparts that promotes 

positive outcomes in 21st-century work and life, and even about whether the current labor 

market truly demands increased cognitive competence. Regardless of this uncertainty, or 

maybe due to it, they put their faith in school-based improvements to promote adult success. 

Specifically, they recommend transforming teaching to focus on: 

• underlying principles 

• the process of learning 

• high-level skills, even if low-level skills have not yet been mastered 

• learning skills and concepts in a specific domain 

• the conditions for application 

• using multiple representations, especially graphic or tactile 

• integrating noncognitive skills 

• giving the learning process ample time. 

These recommendations are presumed to increase the likelihood of transfer and produce more 

effective problem solvers in an unpredictable and fast-changing workplace or society because 

the knowledge and skills learned can be employed flexibly and across a range of problem 

situations. Still, Pellegrino and Hilton acknowledge the power of context, recommending 

teaching the use of skills and knowledge in specific domains, making explicit the conditions 

in which the knowledge might be applied, and assessing its application. As such, Pellegrino 

and Hilton’s recommendations (albeit not aimed at mathematics specifically) depart from a 
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view that prevailed for decades: that mathematics education provides general mental 

training/discipline that can transfer across fields (Stanic & Kilpatrick, 1989). 

Responding to the low level of mathematical topics required in profession-oriented 

community-college courses and students’ inability to apply even this low-level mathematics, 

the NCEE’s (2013) recommendations for mathematics education generally echo Pellegrino 

and Hilton’s. The NCEE urges K–12 schools to spend far more instructional time on 

proportional relationships, percents, graphical representations, functions, expressions, and 

equations, emphasizing conceptual understandings of these topics and their application to 

practical problems. Contradicting current policy statements, but reflecting Pellegrino and 

Hilton’s appeal for ample time to the learning process, the NCEE argues against requiring 

Algebra 2 in high school and advises delaying Algebra 1 for some students. Further, the 

NCEE advocates for multiple mathematical paths, not just the traditional one leading to 

calculus. Options in statistics, data analysis, and applied geometry, for example, would better 

reflect the mathematics used across occupations and retain more students in the STEM 

pipeline. 

Other scholars (e.g., Bishop, 1993; Fischer, 2013; Harvard Graduate School of Education 

[GSE], 2011) argue for contextualized or job-specific learning, either in school or in 

workplace settings. Noting differences among the qualities that constitute “readiness” for the 

workplace, college, and healthy personal development, respectively, the Pathways to 

Prosperity report (Harvard GSE, 2011) concludes that “a more holistic approach to 

education—one that aims to equip young adults with a broader range of skills—is more likely 

to produce youth who will succeed in the 21st century” (p. 4). This more holistic education 

includes vocational education, career counseling from the early grades, and structured 

workplace experiences in high school. The report lauds work-related K–12 educational 

experiences such as the engineering curriculum, “Project Lead the Way”, California’s 

“Linked Learning” initiative, robotics competitions, and various career-and-technical and 

career-academy programs. And while over 90% of the U.S. CEOs surveyed by the Business 

Council (2013) rated secondary and four-year college education “very/most important” for a 

top-quality workforce, 82% felt the same way about “on-the-job training.” The TmL 

researchers aimed their interventions at experienced workers but proposed that gaps in adult 

TmL might be lessened by school instruction that acknowledged the importance of context, 

real-world constraints, action, and responsibility (Bakker et al., 2008). Empirical support for 

this idea comes from the Gallup (2013) study showing that school experience with real-world 

problem solving, more than with any other 21st-century skill, predicted self-reported success 

at work. 

The potential contributions of work-based or work-related learning to 21st-century problem 

solving are twofold: First, it provides realistic contexts for learning that could help overcome 

the failure of abstract, general knowledge to transfer and thus promote the use of academic 

knowledge for solving real problems. (Less clear, however, is whether context-specific 

learning enables knowledge to be used in solving problems beyond the context in which it 

was learned [Cognition & Technology Group at Vanderbilt, 1990].) Second, work-related 

learning is likelier to engender the soft skills and attitudes desired by employers, especially if 

it involves work on projects with real purposes and clients. But blending work (or real-world) 

situations and classroom learning is not a straightforward matter. The TmL researchers warn 

that, “Formulating potential implications of workplace research for school education is a 

tricky business…. One should not make the mistake to try and copy workplace situations in 

school education” (Bakker et al., 2008, p. 142). Indeed, a current topic of contention is 
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whether 21st-century competence is better learned in school or in workplace or other out-of-

school settings (Fischer, 2013). Fifty-nine percent of the young employees in the Gallup 

(2013) study reported learning most of the skills needed in their current job outside of school, 

but this percent dropped significantly for college graduates. The implications of these 

findings are unclear: they may suggest room for improvement in the way high schools 

prepare students for the workplace, or they may indicate that the kinds of jobs filled by high-

school graduates rely less on intellectual, school-taught skills than do jobs requiring a college 

degree. 

Advancing Problem Solving in the Mathematics 

Curriculum  

Recent research about 21st-century work and life, summarized in the prior section, yields 

conflicting perspectives about how technology has impacted workplace problem solving and 

whether cognitive demand is rising in general. Nevertheless, some principles emerge from 

this research with direct relevance to mathematics education: 

• Problem solving in work and life requires a more solid and flexible grasp of basic 

mathematics than much of the population currently possesses. Advanced mathematics 

courses do not appear to be the solution. 

• Certain noncognitive and general skills (that are typically underpromoted in 

education) are critical for workplace problem solving. Many of these are cognitively 

high level. 

• Many jobs, particularly in IT-intensive fields, require an understanding of conceptual 

models that underlie processes or systems (“making sense of mechanism”), which in 

turn requires interpretations of complex representations within the work context and a 

deep understanding of the work domain. 

• In some contrast, everyday life decisions increasingly require interpreting quantitative 

data in various complex forms, in multiple, unfamiliar domains. 

• The ability to apply one’s training and knowledge to novel, unfamiliar problems 

(transfer) is highly privileged by employers, and is presumed most effectively fostered 

when learning occurs in work-based contexts on the job or replicated in schools. 

In light of these principles, we revisit the debates presented earlier and consider how we 

might approach mathematical problem solving within the school curriculum for the purpose 

of preparing students for success in 21st-century work and life. 

Problem Solving: Process and Content 

Earlier, we described a decades-long debate on teaching problem solving versus teaching 

mathematics through problem solving. Mathematical-content knowledge per se is almost 

never an explicit goal of employers, but their clear desire for workers who are effective 

problem solvers implicitly argues for schools to teach problem solving as an end in itself. 

Thus, despite the mathematics-education community’s recent bent towards problem solving 

as a vehicle for learning mathematical content, we recommend honoring both goals. We 

advocate restructuring this debate to ask, instead, how we might design problems that are 

sufficiently cognitively demanding to foster both significant mathematical content and 

effective problem-solving capabilities. As a start, we might consider redefining problem 

solving as an experience where the solver or a collaborating group “needs to develop a more 
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productive mathematical way of thinking about the given situation” (Lesh & Zawojewski, 

2007, p. 782). The focus then becomes one of learning or idea generation, rather than the 

application of problem-solving processes or strategies. Hence, one key feature of problem 

solving that promotes both process and content is the opportunity for student generation of 

mathematical ideas, indeed, even before such content is formally introduced. 

This feature of idea generation reflects calls for more cognitively challenging tasks that 

encourage high-level thinking and reasoning, have multiple points of entry, and enable the 

use of varied solution approaches. Unfortunately, as Silver, Mesa, Morris, Star, and Benken 

(2009) report, emphasis in the 1990s on the importance of cognitively demanding tasks (e.g., 

Stein, Grover, & Henningsen, 1996) appears to have gone largely unheeded. This is a pity 

because Stein et al.’s criteria provide a pertinent basis for designing mathematics-curriculum 

problems that target 21st-century demands related to communication and other general 

problem-solving skills. For example, problems with high cognitive demand require students 

to explain, describe, and justify; make decisions, choices, and plans; formulate questions; 

apply existing knowledge and create new ideas; and represent their understanding in multiple 

formats. Students are likely to face such demands when encountering problems outside of 

school, where uncertainty and a broadening of mathematical content call for problem solvers 

who have the disposition and ability to generate mathematical knowledge on an “as-needed 

basis.” Although debates continue about whether the cognitive challenges of the workplace 

are truly increasing, we do know that more skillful decision making and problem solving are 

needed in all avenues of life, where solving information-laden problems has become 

increasingly vital to one’s overall health, well-being, and achievements. 

General Skills and Heuristics 

Collectively, the general skills for successful problem solving advocated by employer groups 

and mathematics educators share some features, although recommendations for fostering 

these skills remain challenging and, at times, contradictory. From the extensive literature on 

general skills, the four broad areas of employer-desired skills that have been identified by the 

Partnership for 21st-Century Skills (P21, 2010) appear particularly pertinent. These areas, 

which we have delineated in a prior section, include effective reasoning, using systems 

thinking, making judgements and decisions, and solving problems. These skill areas are 

reflected in recent writings of Schoenfeld (2011, 2013) and Lester (2013), who raise the 

importance of recognizing and constructing patterns of inference and making careful 

judgments during the problem-solving process. Schoenfeld’s (2013) inclusion of solvers’ 

beliefs and dispositions about themselves and the discipline being engaged, together with 

their “decision-making mechanism” (p. 17), is an interesting extension of his earlier work, in 

which “dispositions, beliefs, values, tastes, and preferences” (Schoenfeld, 2010, p. 29) were 

identified as core features of successful problem solving. More recently, Swanson (2013) also 

highlighted the importance of students’ beliefs and orientations when faced with challenging 

mathematics problems. She aptly titled her article “Overcoming the Run Response,” invoking 

the fear such problems can instill in students. In revealing students’ emotional reactions to 

these problems, Swanson stressed the importance of self-awareness and regulation, in other 

words, metacognition. Metacognition, in broad terms, is increasingly recognized as playing a 

critical role in successful problem solving, both within and beyond the curriculum (e.g., 

Lester, 2013; Pellegrino & Hilton, 2012). Lester’s (2013) inclusion of “intuition” as one of 

the key components of successful problem solving further supports the recognition of general 

cognitive components, provided students become conscious of their intuitions and can 

evaluate their implications for the problem at hand. Yet, as he and others (e.g., Schneider & 
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Artelt, 2010) have lamented, we still know little about how to develop students’ 

metacognitive abilities. Indeed, current approaches may be inherently self-contradictory (see 

Kirshner, Chapter 4 in this volume). 

The extent to which these competencies and dispositions exist as general abilities that 

individuals can possess and apply across domains, much less be taught, remains unclear. The 

strong consensus on their importance in the workplace could mean employers have actually 

seen workers—their most valuable ones—repeatedly solve nonroutine problems, implying 

that such general competencies exist. Even so, nonroutine should not be confused with 

contextually unfamiliar, a broader condition. Exemplary workers have the ability to solve 

novel problems within their domain (e.g., auto mechanics) but there is no reason to expect 

this ability to extend to problems in other domains (e.g., cooking). This distinction might 

inform the issue of problem-solving heuristics: within-domain heuristics (e.g., for 

mathematical problem solving, as Polya’s were originally intended) might hold promise, but 

not cross-domain heuristics. Still, even the observation of able solvers of nonroutine 

problems within a domain does not guarantee that within-domain heuristics explain their 

success or even exist. Clearly, more research is needed on within-domain problem-solving 

expertise and how it is learned. 

Contexts and Authenticity 

It is apparent that domain knowledge is key to workplace problem solving. Beyond specific 

job training, however, it is hard to see how to address this in schools. Further, while it may be 

possible to succeed at work with expertise in only a single domain, everyday life decisions 

occur in multiple domains encountered too infrequently to become familiar (e.g., medical and 

financial decisions). Still, with little research support for the transfer of mathematical skills 

learned in the abstract to contextual problems, it seems advisable to engage students in 

learning to solve contextualized problems with mathematical tools and in making sense of 

models (real-world systems and processes that mathematically relate quantities). As more 

classrooms employ context-based mathematical learning and modeling, more research can be 

conducted on the effect of such education on students’ problem-solving ability in future 

courses, work, and life—specifically, how well learning to use mathematics to solve 

problems in certain contexts (in school) prepares students for doing so in other contexts 

outside of school. 

Even if such transfer remains hard to prove, there are other reasons to teach mathematics in 

the context of solving realistic problems. It offers a more realistic view of real-world problem 

solving, which is usually interdisciplinary and dependent on contextual specifics (unlike 

traditional school math problems); this view should better prepare students for such problem 

solving. It could also reveal the nature of various workplaces, thus building career awareness 

and a general understanding of what adult work requires. Realistic problem solving could 

also invoke and build noncognitive skills desired by employers, such as collaboration and 

communication. It might also build positive dispositions towards the use of mathematics in 

solving real-world problems, convincing students that mathematical tools can be useful in 

problem solving, developing self-efficacy in the use of those tools, and showing that 

persistence is often required. 

http://e.pub/9781134626717.vbk/OEBPS/xhtml/Ch04.xhtml
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Mathematical Content 

Here, the message from the research is clear: For solving the vast majority of problems 

arising in work and life, only basic mathematics is needed, but people need to be far more 

fluent with its use and application than they are today. The current press to expose more 

students to more advanced mathematics topics before college appears to head in the wrong 

direction, especially when these topics are covered rapidly and cursorily. More advisable 

would be spending more time with each topic, enriching students’ understanding by using the 

topic to solve a variety of mathematical and real problems. For most students, a goal of 

mastery of basic algebra and geometry by the end of high school seems most justified, with 

the addition of the less-traditional topics of statistics, data analysis, and solid geometry. 

Despite the shortcomings of transfer research, the finding by the TmL researchers of the 

importance of understanding the conceptual models underlying real-world processes supports 

the idea that deep understanding of somewhat generalizable concepts is more efficacious in 

promoting problem-solving ability, at least within a domain, than shallower, situation-

specific, procedural knowledge. This suggests that whatever the mathematical content (and 

whatever the context), the primary goal for teaching should be deep understanding of the 

underlying principles and concepts. This should work in both directions: problem solving in 

real contexts can contribute to a deep understanding of mathematical concepts and principles, 

and applying mathematical tools to real problems can contribute to a deep understanding of 

the concepts and principles underlying the real-world systems or phenomena. The sentiments 

of employers and the observations by workplace ethnographers underscore the importance of 

learning and metacognition on the job: successful engineers, scientists, and technology 

workers use mathematics or quantitative reasoning to better understand the systems at the 

heart of their work, at the same time honing their mathematical or quantitative “tools” for 

future problem solving. Schools should make explicit to students that this learning cycle is 

part of what the best STEM workers do. 

Mathematical Modeling—One Way to Prepare for 21st-

Century Demands  

Mathematical modeling is becoming increasingly important in the workplace and in many 

other avenues in life. The terms models and modeling have been interpreted variously in the 

literature (e.g., English, 2013; Gainsburg, 2006; Lesh & Doerr, 2003; Lesh & Zawojewski, 

2007; Stillman & Galbraith, 2011), with debate over whether these are components of the 

broad problem-solving spectrum or entities in their own right. Without taking a stance on this 

debate, we consider modeling a powerful vehicle for bringing features of 21st-century 

problems into the mathematics classroom. 

Modeling has an extensive history within the mathematics community, as can be seen in the 

1983 establishment of International Conferences on the Teaching of Mathematical Modeling 

and Applications (ICTMA; Kaiser, 2010). Various interpretations and forms of models and 

modeling exist, even within the ICTMA community, but we refer to Lesh and Fennewald’s 

(2010) basic “first-iteration definition of a model,” namely, “A model is a system for 

describing (or explaining, or designing) another system(s) for some clearly specified 

purpose” (p. 7). This interpretation is especially germane to fields beyond mathematics 

education, including engineering and other mature science domains. Some of the experiences 

that engage students in modeling from this perspective have been described as model-
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eliciting activities (MEAs; English, 2007; Hamilton, Lesh, Lester, & Brilleslyper, 2008; Lesh 

& Doerr, 2003), where the focus is on the processes of interpretation and reinterpretation of 

problematic information, and on the iterative development of mathematical ideas as models 

are formed, tested, and refined in response to certain specifications. MEAs give students the 

opportunity to create, apply, and adapt mathematical and scientific concepts in interpreting, 

explaining, and predicting the behavior of real-world based problems such as those that occur 

in engineering (e.g., Gainsburg, 2006). 

Exposure to statistical information in these MEAs provides a valuable basis for developing 

the skills that consumers need in working effectively with data. Interpreting and 

understanding the implications of insurance documents, financial agreements, and political 

agendas, to name a few, requires an ability to deal with complex information. Modeling 

problems present students with such data, which must be interpreted, differentiated, 

prioritized, and coordinated to produce a solution model. Furthermore, students’ modeling 

work often elicits nontraditional mathematics topics for their grade level, because different 

types of quantities and operations are needed to deal with realistic situations. For example, 

MEAs often involve accumulations, probabilities, frequencies, and ranks, with the associated 

operations of sorting, organizing, selecting, quantifying, weighting, and transforming large 

data sets (Doerr & English, 2003; Lesh, Zawojewski, & Carmona, 2003). Integral to the 

mathematizing process are the myriad representational media required in expressing and 

documenting the models, including computer-based graphics, tables, lists, paper-based 

diagrams and graphs, and oral and written communication (Lesh & Harel, 2003). Because 

these representations embody the factors, relationships, and operations that students 

considered important in creating their models, MEAs offer an additional benefit to teachers 

and researchers: powerful insight into the growth of students’ mathematical thinking. 

As we noted in our discussion on 21st-century demands, the importance of understanding the 

underlying models that are represented mathematically and technologically is crucial in many 

fields, including engineering, finance, manufacturing, and agriculture. Virtually all aspects of 

modern life have been mathematized using the modeling components we have highlighted; 

our future citizens need to be aware of, and understand how, this mathematization shapes 

their lives in so many ways. In preparing our students to become mathematically aware, 

consideration needs to be given to how we might select contexts that approximate 

authenticity and foster an appreciation of learning through classroom problem solving. 

Modeling problems also foster the types of general skills that employers demand in the 

workplace and that citizens need for maximum societal participation. Such skills include 

critical and innovative thinking, complex reasoning, metacognitive actions, and collaboration 

and communication within and across disciplines. In sum, modeling activities represent an 

excellent example of an instructional strategy that should promote the kind of learning valued 

in 21st-century work and life. 

Concluding Points  

We commenced this chapter by reviewing some of the key debates on mathematical problem 

solving over past decades. Given that these debates remain largely unresolved, we turned to 

research on the demands of modern work and life and examined drivers of change in these 

settings. We considered the nature of the problems that need to be solved in these changing 

contexts and the competencies required for dealing effectively with the challenges that arise. 

In light of this research, we revisited mathematics education and suggested how we might 

better prepare students for successful problem solving in the 21st century. 
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Where do we stand then, with regard to suggestions for how we might advance students’ 

problem solving in today’s world? Clearly, there are many courses of action that might be 

adopted and, with the diverse range of learning contexts we face, no one set of 

recommendations would suit all school systems. Nevertheless, we have focused on ways in 

which we might teach problem-solving processes in conjunction with developing 

mathematical content, how we might address context and authenticity, and how general skills 

might be developed to enhance problem-solving success in the modern workplace and life. 

Many challenges remain, however, in implementing our recommendations and issues for 

further investigation abound. We address just a couple of such issues in closing. 

We have given MEAs as an example of a rich source for developing both problem-solving 

processes and mathematical content as well as providing authentic contexts and fostering 

general skills. Other cognitively demanding problem types that offer similar learning 

opportunities should also be incorporated within the mathematics curriculum. 

Interdisciplinary problems that require synthesizing knowledge from across STEM 

domains—for example, problems in an engineering context—can be appealing and authentic, 

but they remain rare in the mathematics curriculum (English, Hudson, & Dawes, 2012; Suh, 

Seshaiyer, Moore, Green, Jewell, & Rice, 2013). 

Modifying “traditional” mathematical problems to foster idea generation rather than mere 

procedural application is another area in need of attention. Such modification can be both 

teacher and student initiated. Teachers can restructure existing problems to be 

interdisciplinary (perhaps in collaboration with teachers of other subjects), so that obvious 

solution paths become less apparent, not all of the required mathematics is presented, and a 

more open approach to solution is encouraged. And the renewed interest in problem posing 

offers valuable suggestions for engaging students in adapting, creating, and solving their own 

problems, beginning with such experiences in the earliest years of schooling. For example, 

English and Watson (2014) have shown how problem posing can be integrated within the 

regular mathematics curriculum in the areas of statistics and probability, where students 

direct their own investigations. 

Thinking more broadly, we advocate an increased awareness of mathematical problem 

solving beyond the classroom and greater insights into how the demands of the 21st century 

are impacting our lives. While we cannot simply transport the mathematical problems of the 

outside world into the classroom, there are many ways in which we can more realistically 

contextualize “school problems.” Such recontextualization should incorporate a transition to 

more cognitively challenging problems—ones which stimulate curiosity, foster critical 

thinking, promote creative solutions, and feature multiple entry and exit points for increased 

access by a range of students. 
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